
Improving the Performance of Processing for
Small Files in Hadoop: A Case Study of Weather

Data Analytics
Guru Prasad M S1, Nagesh H R 2, Deepthi M 3

Dept of CSE 1, Dept of CSE 2, Dept of CSE 3
SDMIT 1 , MITE 2, JNNCE 3

Ujire, India 1, Moodabidri, India 2, Shimoga, India 3

Abstract--Hadoop is an open source Apache project that
supports master slave architecture, which involves one master
node and thousands of slave nodes. Master node acts as the
name node, which stores all the metadata of files and slave
nodes acts as the data nodes, which stores all the application
data. Hadoop is designed to process large data sets
(petabytes). It becomes a bottleneck, when handling massive
small files because the name node utilize more memory to
store the metadata of files and the data nodes consumes more
CPU time to process massive small files. In this paper, the
author proposes the Optimized Hadoop, consists of Merge
Model to merge massive small files into a single large file and
introduced the efficient indexing mechanism. Our
experimental result shows that Optimized Hadoop improves
performance of processing small files drastically up to 90.83%
and effectively reduces the memory utilization of the name
node to store the metadata of files.

Keywords—Hadoop; Hadoop Distributed File System,; Map
Reduce; Small Files.

I. INTRODUCTION
 In recent years, Hadoop has become a most
popular high performance distributed computing paradigm
for large scale data analytics [1]. The Hadoop architecture
consists of the Hadoop Distributed File System (HDFS)
and a MapReduce programming model. HDFS is high fault
tolerance, high throughput, and high reliability, designed to
deploy on commodity hardware. MapReduce is a
programming model proposed by Google [2], to process
large data sets.
 Hadoop is excellent in handling large files of data;
HDFS divides the input data into data blocks of size 64
MB. NameNode stores the metadata of the data blocks and
DataNodes stores the data blocks. These data blocks are
processed by the MapReduce.
 Hadoop is inefficient in handling massive small
files, whose size ranges from 10KB to 5 MB. Massive
small files are generated by weather sensors, word docs,
power point, flash files, images of maps, MP3, video clips
and so on [5]. These kinds of files will bring serious
problems to Hadoop performance. First, storing too many
small files into Hadoop becomes overhead in terms of
memory usage of metadata stored in the NameNode; this
will impact on the size of the memory in the NameNode.
Secondly, more number of MapReduce task created to
process massive small files and it creates overhead between
MapReduce tasks and CPU time.

 To overcome these problems, the author proposes
the Optimized Hadoop consists of Merge model. It merges
all the input files into a single large file and this single
large file moving into HDFS. HDFS divides the single
large file into data blocks of size 64 MB. NameNode stores
metadata of files and DataNode store data blocks. The
Optimized Hadoop reduces memory usage by the
NameNode to store metadata, reduces overhead created
between MapReduce tasks and improves the performance
of DataNodes to process data blocks.
 The major contributions of this paper are
summarized as follows:

• Effective number of MapReduce task created to process
HDFS data blocks, this drastically reduces MapReduce
task overhead and the total CPU time.

• Efficient metadata management will successfully reduce
the memory utilization of the NameNode to store
metadata files.

• Optimized Hadoop is not just suitable for weather data
files; it can be applied universally to all types of small
files.

 The rest of this paper is organized as follows.
Section II describes background of the Hadoop Distributed
File System and the MapReduce. Section III explores the
small files problems. Section IV provides the proposed
model. Section V presents performance evaluation and
discussion. Conclusion and future work are drawn in
Section VI.

II. BACKGROUND
A. Hadoop Distributed File System
 Hadoop two fundamental subprojects are the
HDFS and the MapReduce. The distributed file system
named by Hadoop Distributed File System (HDFS) is a
designed to run on commodity hardware [3]. The block size
of HDFS is much larger than that of normal file system i.e.
64MB by default. The reason for the large size of blocks is
to reduce the number of disk seeks. This is not a POSIX-
compliant file system, and once data is written to file
system it can't be modified (a write-once, read-many access
model). HDFS protects data by replicating data blocks into
multiple nodes, with a default replication factor of 3.One
major usage of HDFS is which has very good durability
 HDFS has a master/slave architecture which
consists of two important agents, NameNode and
DataNode. Figure 1 shows the Hadoop Distributed File
System. The master, called the NameNode which is
responsible for managing file system namespace, maintains

Guru Prasad M S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6436-6439

www.ijcsit.com 6436

the file system tree and all metadata and file system actions
within the HDFS (e.g. Files list and files’sub-blocks
location information) and there are number of slaves, called
the DataNodes which are responsible for actual data I/O.
The DataNodes service all read/write and file replication
requests based on direction from the NameNode. Because
Hadoop keeps all file system metadata in main memory, it
is necessary for the NameNode to be have own server, this
way file access is not slowed because of strain on the
NameNode from serving metadata requests. Without the
NameNode it is not possible to access the file. So it
becomes very important to make NameNode resilient to
failure

Fig.1. Hadoop Distributed File System.

B. MapReduce
 MapReduce is a programming model from Google
for the purpose of supporting its critical services such as
web search, log analysis, data mining, etc [2]. This model
designed to efficiently execute programs on large clusters,
by exploiting data parallelism and comprises of Map phase
and Reduce phase. In Map phase mapper must be able to
ingest the input and process the input record and that
processed record will be forwarded to Reduce Phase, there
task will reduced.
 The Map function takes in a key/value pair and
outputs an intermediate list of key/value pairs i.e. Map (k1,
v1) → list (K2, v2). The Reduce functions will then take all
values associated to the same key and produce the final
output list of key/values i.e. Reduce (K2, list (v2)) → list
(v3). . The map creates several output files, those records
are sorted by key. One of the important advantages of the
above schema is that the parallelization complexity is
handled. But this advantage often leads to loss of
flexibility.
 Every job must consist of exactly one Map
function and followed by an optional Reduce function,
these steps cannot be executed in a different order. And
also if an algorithm requires multiple Map and Reduce
steps that can be enforced by separate jobs, and data can
only be transferred from one job to the next, through the
file system (HDFS).
 In the initial implementations of Hadoop, Map
Reduce is designed as a master-slave architecture .which
incorporated by JobTracker and TaskTrackers. The
JobTracker is the master which carries off the cluster

resources, scheduling jobs, monitoring progress and dealing
with fault-tolerance along with that it will distribute the
tasks and their input split to the various trackers. On each
of the slave nodes, there exists a TaskTracker which is
responsible for launching parallel tasks and reporting their
status to the JobTracker. The TaskTracker service will
actually run our map and reduce tasks,

III. THE SMALL FILES PROBLEM
 This section explores the impact of small files on
the Hadoop.
A. Impact on time taken to move files into HDFS
 Before running the Hadoop jobs, input files are
copying from local file system into Hadoop Distributed File
System. Larger numbers of small files will take more time
to copy from local file system into Hadoop Distributed File
System.
B. Impact on memory usage of the NameNode
 Hadoop is a Master/Slave architecture consists of
one Master (NameNode) and many slaves (DataNodes).
Hadoop Distributed File System divides the input data into
data blocks. NameNode stores the metadata of each block
and DataNodes stores the data blocks. Each metadata
consumes about 150 bytes of the NameNode memory [8].
For larger number of small files more numbers of metadata
created and it consumes more memory of the NameNode.
C. Impact on time taken to process files
 HDFS divides the larger input file into data blocks
of size 64 MB (i.e. by default) and these data blocks were
processed by the MapReduce. Small files, whose size less
than 64 MB will occupy one data block each and more
number of MapReduce tasks created to process massive
data blocks. It creates overhead between MapReduce tasks
and more time taken to process files.

IV. PROPOSED MODEL
 The proposed model extends Hadoop and has been
named as Optimized Hadoop. The basic idea of our
proposed Optimized Hadoop consists of Merge Model. The
Merge Model algorithm is as follows:
1. Initially returns the array of abstract path names

defining the files in the directory as an input directory.
2. Loop for i=0; i<files.length; increment i

a) Get the actual path of files and read them
b) Insert the lines into the output file.
c) Rea the file till end of file while (line!=null)

3. Display the message that files is merged or if any error
exception is shown.
 In the Optimized Hadoop, Merge Model combines
massive small files into a single large file. This large
file moved into HDFS. HDFS divides a large file into
data blocks of size 64 MB (i.e. by default). Each data
blocks are processed by the MapReduce.

 The Optimized Hadoop solves the small files
problems as follows:
1. Reduces time to move file from local file system to

Hadoop Distributed File System.
2. Minimizes the memory usage by the NameNode to

store metadata of files.
3. Improves the performance of processing for small files.

Guru Prasad M S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6436-6439

www.ijcsit.com 6437

V. PERFORMANCE EVALUATION
 The Performance of the Hadoop cluster with
respect to the time taken to store files into the Hadoop
Distributed File System , memory usage of the NameNode
and time taken to process files was initially benchmarked
with the original Hadoop (traditional) and then compared
with results obtained using the Optimize Hadoop
(proposed).
A. Experiment Environment
 The experimental environment is built on a cluster
with five machines. One machine acts as the NameNode
and the other four machine acts as the DataNodes. Each of
these machines has Intel® Xeon® E5520@2.27 GHz
processor, 2 GB RAM, and 500 GB SATA hard disk and
operating system is Ubuntu 10.0.4. Hadoop version is 1.0.3
and the java version is 1.6.0. The number of replicas is set
to 2 and the HDFS block size is 64MB
B. Workload Overview
 The workload consists of 1,018 weather data files
which is of size 2 GB; they are generated by weather
sensors located across the globe [4]. The File size ranges
from 250 KB to 5000 KB. Figure 2 shows the distribution
of file size.

Fig.2. Size distribution of files

C. Performance Measurement Parameters
The performance of the Hadoop cluster was measured
on the following parameters.
1. Time taken to move files from local file system to

HDFS
2. Memory usage of the NameNode to store metadata.
3. Time taken in the MapReduce phase to process

files.
D. Time taken to move files in to the HDFS
 Files moving operation was performed on both the
original Hadoop and optimized Hadoop. There we recorded
the time taken to store files into the Hadoop Distributed
File System. Table I shows the time taken S by the original
Hadoop (traditional) and the optimized Hadoop (proposed)
to move files into HDF. Figure 3 shows the chart of the
time taken by the original Hadoop (traditional) and the
optimized Hadoop (proposed) to move files in to HDFS.

Table I. Time taken to move files in to the Hadoop Distributed File
System

Technique
File Size in

GB
Time Taken in

seconds
Original Hadoop

(traditional)
02 162

Optimized Hadoop
(proposed)

02 71

Fig.3. Time taken to move files in to Hadoop Distributed File

System

E. Measurement of memory Usage of the NameNode
 Hadoop Distributed File System divides the input
data into data blocks of size 64 MB (i.e. by default). It
stores the metadata of each block in the NameNode (Master
Node) and all the data blocks in the DataNodes (Slave
Nodes). In the NameNode, metadata of each block
consumes around 150 bytes of memory.
 In the case study of Weather data contains 1018
small files; total size of these files is 2 GB. In the original
Hadoop, the HDFS created 1018 data blocks, because the
input data contains 1018 small files whose size less than 64
MB. Memory usage of the NameNode to store 1018
metadata of data blocks was 152700 bytes. In the optimized
Hadoop consists of the Merge module, it combines 1018
small files into a single large file of size 2 GB and moved
this into the HDFS. HDFS divides 2 GB file into 32 data
blocks. Memory usage of the NameNode to store 32
metadata of data blocks was 4800 bytes.
 Table II shows the memory usage of the
NameNode in the original Hadoop (traditional) and in the
optimized Hadoop (proposed). Figure 4 shows the chart of
the memory usage of NameNode in the original Hadoop
(traditional) and in the optimized Hadoop (proposed).

Table II. Memory usage of the NameNode
 Technique Memory usage in bytes

Original Hadoop
(traditional)

152700

Optimized Hadoop
(proposed)

4,800

Fig.4. Memory usage of the NameNode

Guru Prasad M S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6436-6439

www.ijcsit.com 6438

F. Time taken to process files.
 Hadoop is designed to process large files. The task
of processing large numbers of files of smaller size
degrades the performance of Hadoop system. The case
study of Weather data analytics contains 1018 small files
[8]; total size of these files is 2 GB. When all these files are
processed individually, the Map phase takes a time of 3998
seconds and the Reduce phase takes a time of 104 seconds.
Hence total CPU time taken is 4102 seconds. In our
optimized Hadoop, the Merge module merged these 1018
files into a single large file of size 2 GB. To process this
single large file, the time taken by the Map phase is 340
seconds and by the Reduce phase is 36 seconds, hence the
total CPU time taken is 376 seconds. The proposed
optimized Hadoop improves the performance 91.49%,
65.38% and 90.83 % of Map time, Reduce time and total
CPU time respectively.
 Table-III shows the comparison of Map time,
Reduce time and total CPU time of the original Hadoop
(Conventional) and the optimized Hadoop (Proposed) of
Weather data analytics. Figure 5 describes the chart of Map
time, Reduce time and total CPU time of the original
Hadoop (Conventional) and the optimized Hadoop
(Proposed) of Weather data analytics

Table-III .Comparison of Map, Reduce and Total CPU time of the original

Hadoop (traditional) and the optimized Hadoop (proposed)

Technique
File
Size
In GB

Map
Time in
seconds

Reduce
Time in
Seconds

Total
CPU
Time in
Seconds

Original
Hadoop
(traditional)

02 3998 104 4102

Optimized
Hadoop
(proposed)

02 340 36 376

Fig.5.Chart of Map, Reduce and Total CPU time of the original Hadoop

(traditional) and the optimized Hadoop (proposed)

VI CONCLUSION AND FUTURE WORK
 Hadoop is deployed to process large files and
suffers a performance penalty while processing a large
number of small files. In addition, the memory usage of the
NameNode to store metadata increases rapidly and more
time taken to move files from local file system to Hadoop
Distributed File System. The proposed Optimize Hadoop
minimizes the memory usage of the NameNode to store the
metadata of files, reduces the time taken to move files from
local file system to Hadoop Distributed File System,
efficiently managed small files and enhance the
performance of processing inherently small input files. The
experiment results show that our Optimized Hadoop
effectively improves the efficiency of storing, managing
and processing small files. Our strong findings are as
follows: (1) Time is taken to move files from local file
system to Hadoop Distributed File System is reduced from
162 seconds to 71 seconds. (2) Memory usage by the
NameNode to store metadata has decreased from 1, 52,700
bytes to 4,800 bytes. (3) Improves performance of
processing small files drastically up to 90.83%.
 Our further work will include finding other
parameters that impact on the Hadoop performance.

REFERENCES
[1] Apache Software Foundation. Official apache Hadoop website,

http://hadoop.apache.org/, Aug, 2012.
[2] Jeffrey Dean and Sanjay Ghemawat, “MapReduce:

 Simplied Data Processing on Large Clusters” in
 Google, Inc.

[3] The Hadoop Architecture and Design, Available:
http://hadoop.apache.org/common/docs/r0.16.4/hdfs_design. html,
Aug, 2012.

[4] National Climatic Data Center (NCDC) http://www.ncdc.noaa.gov/
[5] Bo Dong, Jie Qiu and Qinghua Zheng “A Novel Approach to

Improving the Efficiency of Storing and Accessing Small Files on
Hadoop: a Case Study by PowerPoint Files” IEEE International
Conference on Services Computing, 978-0-7695-4126-6/10,
2010.

[6] Hung-Chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker
from Yahoo and UCLA, "Map-Reduce- Merge: Simplified Data
Processing on Large Clusters", paper published in Proc. of ACM
SIGMOD, pp. 1029– 1040, 2007.

[7] K. Schvachko, H. Kuang, S. Radia, R. Chansler. “The Hadoop
Distributed File System”. In Proceedings of IEEE 26th symposium
on Mass Storage Systems and Technologies (MSST), Incline
Village, Nevada, USA, May 2010.

[8] Tom White, “The Small Files Problem”.
http://www.cloudera.com/blog/2009/02/the small files problem,
2009.

[9] Chuck Lam, Hadoop In Action, 1st ed. Dec. 2010, pp. 8.
[10] Tom White, Hadoop: The Definitive Guide, 2nd ed. O’Reilly Media

Yahoo Press, Jun. 2009, pp. 41 45.

Guru Prasad M S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6436-6439

www.ijcsit.com 6439

